PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Tunneling through a fluctuating barrier: Two-level model
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We investigate the problem of tunneling across a randomly fluctuating barrier in the presence of dissipation
in the two-level approximation. The barrier fluctuations are induced by a random telegraph noise whose
switching ratev is taken as a control parameter. For infinitely fast fluctuations the dynamics of the system is
similar to the static case, while, for very smallthe barrier evolution is a superposition of static solutions for
both configurations. This leads to a resonant beating or long-time periodic localization. For an intermediate
value of » we have found a resonancelike suppression of coherent tunneling. When the system levels are
detuned, a resonant enhancement of decay in the incoherent regime also occurs.

PACS numbgs): 05.40:-a, 03.65.Sq, 73.40.Gk, 82.20.Mj

I. INTRODUCTION driven barrier height in the TLS approximation. Our main
interest is the dependence of the population dynamics on the
The problem of relaxation from a metastable state in aorrelation timer of the barrier fluctuations. The correspond-
double-well potential occurs in many problems in physicsing problem has been considered in classical systems, lead-
and chemistry as well as in other scientific argflsIn clas-  ing to the discovery of resonant activatifi?]—the appear-
sical systems the process occurs due to the ubiquity of flucance of a maximal value of the mean escape rate for some
tuations, not necessarily of thermal origin, and one must confinite value ofr. Further, it has been proved that an opposite
sider the problem in the framework of dissipative dynamicseffect, called inhibition of activation, may also ocdur3],
In quantum systems a metastable state may be also emptied., a maximal slowing down of the activation process for
due to the tunneling effect, so the problem appears as a corseme finite degree of correlation of the barrier perturbation.
petition between coherent quantum dynamics and incoherei@ur aim in what follows is to look for similar resonancelike
dissipation. The simplest model of a quantum particle moveffects in quantum systems. Goychuk and co-workers initial-
ing in a double-well potential is given by a two-level systemized studies of this problem. In Ref9] they found both
(TLS) [2]. This represents a reasonable approximation wheaumerically and within certain approximations that the trans-
the lowest two states of the system are well localized in théer rate in dissipative tunneling approaches a maximum for
two potential wells, and their energies are much less than the™* of the order of unperturbed. They also considered]
energy of higher states as well as than the barrier heighthe influence ofr on the transition from coherent to incoher-
Within this approximation an isolated system is completelyent evolution, although only in a degenerate case@) and
described by two parameters only: the tunneling matrix elefor some particular examples. Here we treat this problem in a
ment A which couples the levels and contains informationmore systematic way, looking for any resonancelike features
about the height of the barrier; and the detuning paramgter in the time dependence of the system.
i.e., the difference between the energies of the ground states The physical situation which we intend to investigate is
of the wells, which accounts for the asymmetry in the sys«known to occur, e.g., in long-range electron transfer reac-
tem. Although this formulation seems very simple of firsttions[14,8,11. In such reactions the tunneling distance ex-
sight, the coupling to the thermal bath substantially complitends up to 2630 A, much more than the range of the
cates the probler2,3]. overlap of atomic orbitals of the donor and the acceptor. The
An important generalization appears when the tunnelingtate of the medium between those centths bridge plays
system is exposed to time-dependent external fipddS].  an essential role in the transfer process, so the dynamics of
This is the case when one drives the quantum system with @onformational variations of the molecule cannot be ignored.
strong laser field which results in modulation of the biasAnother area where the stochastic perturbation affects the
parametete. Until now the latter topic has attracted the ma- tunneling barrier is semiconductor physiesg., Ref.[15]),
jority of the attention: only a few papers have considered thavhere lattice excitations permanently modify the shape of
problem of a time-dependem, i.e., the effect of barrier the band structure. An external random perturbation of a bar-
modulation on the tunneling dynamics. Grifoni and co-rier can also arise when some control parameters fluctuate,
workers[6,7,5 drive the barrier with a periodic signal, while e.g., the electric field used to polarize a multilayer structure.
Goychuk and co-worker8—-11] used a stochastic perturba-  The problem of tunneling through a time-modulated bar-
tion of A. rier is known also in the scattering area. Some authors
In this article we also address the problem of randomly{16,17 analyzed this phenomenon in the presence of peri-
odically oscillating height of the barrier. The main difference
between that case and the present one stems from the form of
*Electronic address: jan.iwaniszewski@phys.uni.torun.pl the potential. In the scattering problems the potential is of a
"Permanent address. finite range, outside which the particle moves freely. Hence
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the system is characterized by continuum of possible statesature of the environme®,3]. However, our aim here is to
with some resonant structure induced by the barrier modulastudy the influence on the tunneling effect of a random dis-
tion [16]. The particle interacts with the barrier during a turbance of the potential barrier, whereas the existence of the
finite time interval, being reflected or transmitted with a si-environment just plays a secondary role. We need it only to
multaneous loss or gain of quantum of energy of the oscillaintroduce a mechanism of dissipation.
tions. Our model concerns a confined system with a well- Suppose that d@t=0 the particle is localized in one of the
defined number of discrete states; consequently one cagvotential wells(say the right-hand oneWe are interested in
speak about a localization of the tunneling particle or about ahe probability P(t) of finding the particle in this well at
guantum coherence and its suppression. timest=0. This is simply related to the mean value «f:

As already mentioned, the TLS approximation of the tun-
neling problem can legitimately be applied only when certain 1
relations between the characteristic energies of the system _=
are fulfilled. This in turn imposes restrictions on the possible P 2 (o) +1). @
values of the parameters used. However, in what follows we

will not comply with them because our two-level model may

also describe other quantum systems where there are no sudfre(:--) means averaging over both noisgf$) and 7(t)

constraints on the parameters, e.g., a two-level atom intera s well as over quantum degrees of freedom. Following Refs.

ing with an electromagnetic field 19] or [20] to obtain the von Neuman-Liouville equation
The rest of the paper is organized as follows. In Sec. Il Wefor the density operator of the system, and then exploiting

describe our system and obtain basic dynamical equations. e Shap'FO'Log"."OV the_orefer], one comes to a set of six
Sec. Il we review the properties of a static TLS system, an Inear ordinary differential equations which completely de-

consider the two limiting cases of infinitely fast and slow SCriPes the system,
fluctuations. Next we present the exact results for the unbi-

ased cas€Sec. IV) and some approximations and numerical dR
results for the biased cag&ec. \). The results obtained, —=AR, (3a)
and the conclusions drawn are presented and discussed in dt
Sec. VI.
where
Il. SYSTEM
The Hamiltonian of the system can be written as (ox(1))
1 1 1 {oy(1))
H= 2ﬁA(t)0x+2ﬁeoz+2ﬁ§(t)Uz. (1) . (o,(1)) | @b)
(o) m(1))
The Pauli matricesr; (i=Xx,y,z) are the basis operators in (o, () 9(1))
the localized representation in which the eigenstates-,of
correspond to localization of the system in one of the poten- (o) 7(1))
tial wells. The first term in Eq(1) describes tunneling be-
tween the wells. Due to the barrier fluctuations the tunneling ok —€ 0O 0 0 0
matrix elementA(t) is a random function of time. In the
following discussion we assume that these fluctuations arise € —2k Ag 0 0 Ay
from a symmetric dichotomic noisebN) %(t). Exploiting 0 ~A, O 0 A, 0
the properties of DN independently of the way it acts on theA=
barrier, and without any loss of generality, one may write a 0 0 0 —2xk-2v € 0
decompositionA (t) =Ay+ A, n(t). The noisen(t) of zero 0 0 A € —2k—2v Ay
mean is characterized by correlation function(t) 7(s)) 0 ~A, O 0 — A, —2,

=exp(—21t—9), where the jump rate is half of the inverse
of the correlation timer of this noise. 30

The second term ikl comes from the detuning energjy
between the two levels, while the last one gives the interacThe problem has five parameters, four of which-A,, «,
tion with the environment. It is given by a simple bilinear and v—may be equal to 0. Onl}A,#0, since we do con-
coupling of the operatosr,, which is the quantum counter- sider a tunneling problem(Note that because of thid
part of position for a tunneling particle, with a zero-meancannot be greater thak,.) From the form of the evolution
Gaussian white noisé&(t), which represents the environ- matrix A [Eq. (30)], it follows that only the relative values of
ment. This noise is parametrized by the intensity, &hile  the previous four parameters with respectMgwill be im-
its correlation function read<(t) £(s))=4«5(t—s). Such a  portant for the evolution. For the convenience of further dis-
model of interaction with the surroundings may be consid-cussion we leave all the quantities in the formulas below, but
ered as a high temperature approximation of the quanturin numerics we use such relative values of parametns-
oscillators model of a thermal bat8,3]. Using this model ply Ag=1). Also time in the figures is given in dimension-
we neglect many interesting features related to the quantuiess unitst—t/A.
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FIG. 1. Time evolution oP(t) for a static barrier 4,=0), with
A=A,=1 for the unbiased case wi=0 (a) and the biased one
with e=2 (b). The damping ratec induced by the environment
reads 0.01(dotted curvg 0.1 (continuous curve 1.0 (dash-dotted
curve, and 100(dashed curve In all figures the dimensionless

time is given in units ofA,.

I1l. SOME SPECIAL CASES
A. Static barrier

Before we will investigate the influence of barrier fluctua-

tions on the tunneling process, let us first briefly recall the

main features of tunneling through a static barfzf2,3,7.
In a symmetric casee=0), and without any interaction with
the surroundings,P(t) oscillates continuously with fre-

quencyA and amplitude 1/2. Coupling to the thermal bath
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e A2
P(t)=§ 1+ EJr&cos(Qt) , 7
where
Q=A%+ (8)

Although € speeds up the oscillations, it also decreases their
amplitude, so that less than the entire amount of probability
is sent between the levels. &# 0 one has to solve a three-
dimensional problem. Although this may be done analyti-
cally, we do not present the result because it is terribly com-
plicated. We mention here only thatéf<A?/8 andx,<

< k,, Where

AZ
Ki’zzp[l+2082_884i(1—882)3/2], e=¢€lA,
€

©

all three eigenvalues of the problem are rézgative. In

the other cases there is one real eigenvalue and a pair of
complex-conjugated eigenvalues, so the system exhibits
damped oscillations. However, for largeor € the amplitude

of these oscillations is negligible and the system relaxes in-
coherently to 1/2. Some examples of the evolutiorP¢f)

are presented in Fig.(l). As for the unbiased case, the cou-
pling to the bath suppresses the coherence but, because of the
asymmetry, the center of oscillations deviates tow&d
>1/2. On the other hand, an interaction with the surround-
ings also unloads the surplus of probability of the initial
state, so eventually is distributed equally between both
levels.

B. Infinitely fast fluctuations

In the limit v— o the auxiliary quantitiego;(t) n(t)) re-

impedes tunneling, which results in a damping of the cohertay o zero within the infinitely fast scale of time, so the

ent evolution,

p(t):% 1+ %exp(—xt)cos(m—qﬁ) : 4

where sing)=«/A, as well as in a decrease of the frequency

of the oscillations

Q= A?— k2. (5)

Whenk becomes greater thanthe evolution becomes com-
pletely incoherent,

1 1
_J’__

PO=5"2r

[(T+x)exd —(«—T)t]
+(I'=x)exd — («k+1)t)], (6)

wherel’ = \/k2— AZ. A further increase ok slows down the

system evolves as in the static case wkkA,. In other
words, for very fast fluctuations oA(t) the dynamics is
governed by its mean valuk,,.

C. Infinitely slow fluctuations

It follows from a simple analysis of Eq&3a)—(3c) that, in
the limit of very slow fluctuations ¥—0) the evolution of
the system is a superposition of the evolutions in two static
configurations with tunneling matrix element&.,.=A,
+ A4, respectively. Consequently, the evolution Bft) is
richer than previously, with different combinations of types
of solutions for static cases with, and A_. Some ex-
amples are displayed in Figs. 2 and 3. For the unbiased case
(e=0) when « is small P(t) relaxes with two-frequency
oscillations. For small\; these frequencies are similaee
Ref.[5]), and we observe a beating phenomefieig. 2(a)].
On the other hand, when; is large, so thatA _ is much

tunneling so much that the system stays in the initial well forsmaller tham\ ., these frequencies are correspondingly very
a very long time, which is known as localization induced by different, and one can notice a phenomenon similar to local-

damping[2]. Some examples of the evolution &ft) are
displayed in Fig. (a).

ization in a potential well—for half of the period of slower
oscillations the system “prefers” to stay in one of the po-

A nonzero bias é#0) also makes it more difficult to tential wells exhibiting only fast oscillationghe larger fre-

tunnel. Fork=0, we have

qguency inside it[Fig. 3a)].
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increases the frequency of oscillation in the coherent regime
[see Eq(8)], the beat frequency decreases, as can be seen in
Fig. 2(b) whereA;=0.1. In contrast, this effect is invisible
when A, is large[Fig. 3(b)] because, as follows from Eg.
(7), the amplitude of slow oscillations is very small. Coher-
ent tunneling means single-frequency damped oscillations.

IV. UNBIASED CASE

For a system with degenerate energy levels-Q) the
quantities{ o, (t)) and{o(t) 5(t)) are decoupled from other
dynamical variables, and proble(8a) reduces to a fourth-
dimensional one which, fortunately, is solvable analytically.

A. k=0

Let us begin the analysis from the case when the system
does not interact with the environment, i.e., wher 0. If
(b) v<<A, the relevant eigenvalues of matrix A read

% 20 20 60 80 1 N=—vxi0,, (10)

FIG. 2. Time evolution ofP(t) for an infinitely slow ¢=0)  where, ,=Ay+ m__,ﬁ and
random perturbation of the barrier with a small amplitude,; ( '
=0.1). The other parameters are the same as in Fig. 1. A,

— 2—2qu —t)

An increase ofx damps the oscillations and leads to in- VALY
coherent tunneling. However, £, is comparable withA, X[cog Qi t+ @) +cogQyt— )], (11
the difference betweefd , andA _ is large, so that the criti-
cal values of« for a transition from coherent to incoherent Where sing)=»/A,. As discussed in Sec. Ill C, i#=0 then
dynamics in the two configurations are very different. Con-P(t) is a superposition of two coherent oscillations of fre-
sequently one can observe single-frequency damped oscilluencies(}; ;= Ay A4, respectively. A nonzero value of
tions moved toward®>1/2, an effect very similar to that of brings these frequencies closer and causes damping. It also
the biased static barrier in Fig(d). However, the reason for introduces a phase difference between the two modes and

the deviation is now different. It occurs due to the slowingmodifies their amplitudes. When approaches\; both fre-
down of relaxation in the\ _ configuration. quencies approach, and the phase difference equaif2.

As in Sec. Ill A, whene#0, curvesP(t) are moved up- If v>A; we have
wards[Figs. 2b) and 3b)]. We may note also that, sinee A=—Tp %A, (12

whereT'; ,= v+ \»?—AZ, and

1
P(t): §+

Pt
P =+ 1 S(At)1<1 7 ) A—Tyt)
==+ =CogApt)| 5| 1— ——=—=|exp—T';
L e 2 2 2 [12— A2
o5p ¢ "’ '
14
+§ 1+ ﬁ)exq—th) ) (13

i.e., P(t) is a superposition of two damped oscillating modes
with the same, independent from frequency. An increase

of v yields that the first modéwith I";) is damped more and
more strongly, and its amplitude decreases faster and faster

toward 0 asy—. It is this mode which is associated with
o5l the fast time scale mentioned in Sec. Ill B. On the other
’ hand, wherv increases, the second mode is damped less and
less and its amplitude tends to unity. In the limit> this
mode reaches an undamped oscillating state in accordance
(b) with Sec. Ill B.
00 20 20 80 20 I It follows from the above discussion that although no

damping originates from the interaction with the thermal
FIG. 3. The same as in Fig. 2, but for large amplitude, (  bath (x=0), nevertheless the system is damped for a finite
=0.95) of barrier fluctuations. value of fluctuating rate. This is because of the stochastic
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FIG. 4. Time evolution ofP(t) in dependence on the decimal
logarithm of v for the unbiased casee€£0) without interaction

with the environment £=0), for A;=0.1. % ] 5 o 3

time dependence of the tunneling matrix element, which F|G. 5. Regions of different types of eigenvalues of maxior
dephases itself at random for any realization of the tunnelinghe biased systeme& 0) with Ay=1.0 andA;=0.8. Only the four
process, causing decoherence. An average over the whadgenvalues relevant to this case are considered. The regions and
ensemble of realizations of(t) results in an exponential curves are numbered in accordance with the text. The broken line
damping of coherent oscillations as well as in alteration ofmentioned in the text should follo@, until the pointB, and then
amplitudes and relative phases of possible modd3(oy. If follow C.,.

v<<A,, both modes are of equal importance, whereasvfor

greater tham\; one of them dominates the other. The stron-(«,v). The curve<C; (i=1,2,3) which separate the different
gest damping of the dominant oscillations appears for regions are given by the expressions

=A4, which constitutes a resonancelike condition for the

suppression of coherence in the system. Since neither quan- Ci: V:AOAl/\/AS_ K?,
tities v andA 4 concern the system itself but relate, rather, to
the barrier disturbance, one may say that the perturbation is C,: v=+(k—A;)>?—A3,
in resonance with itself. As a result of this resonance, one
observes a maximal suppression of coherence in a tunneling Cy: w= /—(K+A1)Z—AS.

process. An illustration of this effect is shown in Fig. 4 on a

three-dimensional plot of the time evolution B{t) in de-  ope may note that any variation @; only moves the
pendence on. boundaries between these regions. It has no effect on the
topology of this figure.
B. k#0 Figure 5 confirms an obvious expectation that, for small
If the system interacts with its surroundings the eigenval the evolution of>(t) should be very similar to that which
ues ofA reads a$23] we d_|§cussed in Sec. IV A. Of course a nonzero value_r qf
modifies the frequency, but more important is that it in-
A=—v—k++Jax2\b, (14) ~ creases the damping parameters, so the coherence of the tun-
neling process is being suppressed faster.
where Relating our discussion to Sec. llI C, it is also obvious
that for small nonzero values of the system behaves very
a= K>+ VZ—A(Z)—AZ, (159 similarly to the case of infinitely slow fluctuations. As pre-
viously, a finite value ofv modifies the frequencies and in-
b= k212 + A2AZ— 12AZ. (15h)  creases damping rates. An increasevoélso modifies the
boundaries between the three different types of evolution in
[The two remaining irrelevant eigenvalues, which are assosuch a way that they are moved toward greater values of
ciated with(o(t)) and{o,(t) 7(t)), are:—x and—«x—v.]  For largerv the two-oscillatory region disappears, but the
Analyzing the signs and the relationship betweeand b, remaining two exist always.
one can distinguish four possibilitied;) two pairs of com- The situation is a little bit different for very large. The
plex conjugated eigenvalues with different real parts and thexpectation about the similarity to the dynamics of the case
same imaginary onesll) two pairs of complex conjugated with infinitely fast fluctuationgSec. 1l B) proves correct for
eigenvalues with the same real parts and different imaginarfinite « only. For largex the two regions mentioned above
ones;(Ill') two different negative real eigenvalues and oneappear. We can also note that in comparison with the prop-
pair of complex conjugated eigenvalues; gid) four dif-  erties of the system in the infinitely slow limit, the main
ferent negative real eigenvalues. In Fig. 5 we illustrate theesult of a finite value of is an increase of damping rates of
location of these types of eigenvalues in the parameter spac¢ke relevant modes.
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log(v) 0 1780t log(v) 0 1780t

FIG. 6. Time evolution ofP(t) in dependence on the decimal FIG. 7. The same as in Fig. 6, but for strong interaction with the
logarithm of v for the unbiased case€ 0) with weak interaction environment g=10).
with the environment £=0.01), forA;=0.1.

damps the oscillations, for larger it starts to compete with

In light of this discussion, we may divide the parameterthe suppression of tunneling by barrier fluctuations. Conse-
space f,v) into two regions(dashed line in Fig. 5 in  quently, for x of the order ofA,, the resonance could no
which P(t) relaxes either as in the limit=0 (under the longer be seen.
line) or as in thev=c one(over the ling. In the latter case However, for very largex, in the region of localization
all four modes are important for the relaxation process, whilecaused by strong dampin@ec. 11l A), we can observe an-
in the former asv increases two of them have less and lessother effect of the enhancement of suppression of tunneling
effect, since their damping rates increase witto infinity. procesgsee Fig. 7, although it is rather tiny. As in the case

Knowing the eigenvalues of the problem one can writeof a static barrier, wher is very large, two eigenvalu¢gqg.
down the expression fd?(t). In the case ob>0 itis con-  (14)] are of the order ok, while the other two become very
venient to show it in compact form: small. ConsequentlyP(t) can be approximated as follows
[24]:

1 1
P(t)= 5+ —=exp(= (k+ ) (kv+ Vb)Cy(1) 11
4\b P(t)%§+ 5[(14’&1*az)eXK*Z(K(Jtl*V&s)t)

—(kv=\b)Cy(t) + (v(k?— A§+\b)

+ k(2 +0))Sy (1) — (n(k*— A= \b) s o 22 s
where a;=(A5+A)/4k*, a,=4A5A7/4k“v°, and as

+k(v?=\b))Sy(1)]. (16)  =a,+A% k> The reason for this effect is similar to that in
the case of maximal suppression of tunneling #e¥ A in a
If 0<a+2yb=TI%, then Cy(t)=cosh(yt) and Si(t)  static barrier. Fow>1/x only the first exponent in Eq18)
=sinh@C;t)/T1. If 0>a+2\b=—-0%, thenC,(t)=cosflt)  contributes to the evolution oP(t). Its decay rate ap-
andS, (t) = sin((2,t)/€);,. There are similar definitions for the proaches a maximum far=A,, so in region ofv~A, we
quantitya—2b and the function€,(t) and S,(t). When  observe a maximal decay 6f(t). It follows from the form

+ aexp(—2(v+ kay+ vas)t)], (18

b<0, we have of a5 that the effect could be seen for large values\of
1. A . V. BIASED CASE
P(t)= §+ exp(— (k+ v)t)sinh(I't)
2y=b A. k=0
rv- b—(yZ—Ai)Q The nonzero biaseg# 0) essentially complicates the prob-
X 2402 cog () lem, since all the components Bfare dynamically coupled
in Eqg. (3a). However, fork=0 one can reduce the problem
(vz—Af)I‘+Q b of finding eigenvalues to the solution of a third-order poly-
+| v+ 2502 sin(Qt) |, (17 nomial. That is,
+

A=—vEVVi+p, (19
where we definer ' +iQ =+ \Ja*+ 2i/—b.
The discussion about the phase diagram of possible types u3+ (a, + a_ ) u?+ (e, a_ +4v2ag) u+ 42N €2=0,
of eigenvalues suggests that, along the broken line in Fig. 5, (20
one should expect the appearance of the resonancelike be-
havior which was found fok=0. This is true for smalk, as ~ where a.=(Ay*A;)?+€? and ap=(A3+ €?). Although
shown in Fig. 6. Since an interaction with the surroundingsEq. (20) may in principle be solved analytically, nevertheless
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FIG. 9. Time evolution ofP(t) in dependence on the decimal
logarithm of v for the biased systeme 2) without an interaction
with the environment £=0), for A;=0.1.

10 4 2 0 o o _ _
H situation is very similar to the unbiased case in Sec. IV A.
FIG. 8. Graphical solution of Eq20') for a few values ofy: The probabilityP(t) oscillates with two frequencies close to

0.2, 0.5, and 0.8. The other parametersge-1.0,A;=0.95, and ~ @=, With a slightly damped amplitude. The only difference
e=15. is that the levels detuning moves the center of oscillations

toward greater probabilities. Ag reaches its bifurcation
the result is too complicated for an exact analysis. Instead/alue where a pair of complex roots of H@O) appears, we
from the form of Eq(20) we may deduce some properties of observe strong damping &f(t). The mechanism is the same
its roots and then the way in which the eigenvalues depends discussed in Sec. IV A, although here the critical value of
on v. To this end it is convenient to rewrite ERO) by v also depends oe.

means of two auxiliary functions—a cubic functidp(w) A further increase ob leads to a new effect which is not
=u(p+a)(p+a.) and a linear one fy(u) present in the unbiased case. We observe strong damping for
= _4,,2(0(0M+A§62); the value ofv for which a minimum of\; appears. This
means that, for this value of, the dynamics ofP(t) is
fi(p)—fo(u)=0. (20)  affected very much byo,(t)). Our estimation for smalh,

) ) ) shows that, at this minimumy is of the order of the period

Let us notice thav interferes in Eq(20') through the slope  of unperturbed oscillations, so it may be considered as a
of f2, only. The zeros of both functions are unaffected by it.resonance between the characteristic time of static system
If »=0 thenf,(u) vanishes, and zeros df(u) are the  ang the rate of stochastic disturbance. Singeis a non-
roots of Eq.(20). For a nonzera, real roots of Eq(20) are monotonic function ofe, this resonance vanishes when the
given by intersection points of;(u) and f5(«), as dis-  getuning of levels becomes too large. The first type of reso-
played in Fig. 8. We can see that as compared with the Umyance also vanishes asncreases, since it concerns the co-
biased system a nonzero value efntroduces quantitative perent part ofP(t) which decreases with detuningpec.
changes only. As before, asincreases the two, more nega- ||| A). However, as can be seen in Fig. 10, after a suitably

pair of complex roots. This corresponds to the case when of p(t), while the first type does not.

becomes greater thaky in Sec. IV A. In addition, there is a
third root of Eq.(20) which lies close to zero. It originates

from the coupling with{o,(t)) and{o(t) (t)). For anyv f",:':":',',’”llﬂlll,l,
it remains in the interval £ A2€?/ a,0). Thus for smallA, P(t) R ?.,',',llllll[,’t’l’/
we may estimate it pgrturbatively, leading to the following ; \sg\::‘“:::‘s‘&:‘%&?’,[,’[éfj
form of the smallest eigenvalue: \\\ss*:‘s\\\s:“\s\\\\\:&w‘mt,},’,% 4
N ) 4
. | ‘
2A§62V 2
N~————-. 1
! ao(ag+4v2) 075
0
In both limits of » it vanishes but it reaches a minimum for N
v=1ag/2, with the valuex,;=—AZ2e?/(2a3%). From the 05
other hand this value is the most negative ér2A3. h

The above characteristic features of eigenvalues are log(v) LI 3 250 t
clearly reflected in the dynamics of the systérig. 9). For
small v, when we have two pairs of complex eigenvalues the  FIG. 10. The same as in Fig. 9, but fer-20 andA;=0.95.
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mal logarithm ofv for the biased caseeE 2) with the interaction
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B. k#0

The general case with both biag#0) and interaction
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VI. CONCLUSIONS

In this paper we have investigated the evolution of a
quantum particle placed in a double-well potential when the
potential barrier is subjected to random fluctuations. The sys-
tem has been approximated by a two-level model, while the
modulation of the barrier has been given by a dichotomous
noise 7(t). Additionally, the system has been allowed to
interact with its environment. We have focused on the influ-
ence on the quantum tunneling process of the finite value of
the jumping rater of 7(t). The most important finding of
this research is the appearance of a resonant damping of the
tunneling in both possible kinds of evolution: coherent and
incoherent relaxation.

We have found two types of this resonance. The first one
originates in the destructive interference of damped oscilla-
tions associated with the evolution in two possible configu-
rations of the system. For of the order of the stochastic
amplitudeA; both these modes reach the same frequency,
but with opposite phases that cause a very fast equilibration
of the system. The most interesting fact is that the resonance
refers solely to the parameters of the stochastic perturbation.

with the environment £#0) cannot be solved analytically. Moreover, the characteristic time of this resonance may vary
However, it seems that the conclusions of the previous casegithin a very large interval: from the mean value of the
may be extrapolated to this case. As for the unbiased systemynneling matrix element\, to the value of the damping

a nonzerok introduces damping of the evolution, so the constantx resulting from the interaction with the surround-

expected resonant effects become less dle@y. 11) or are

even totally wiped outFig. 12.
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FIG. 12. The same as in Fig. 11, but fer 10.

ings. Hence one may exploit this mechanism to control the
rate of suppression of tunneling phenomenon.

The second type of resonant damping occurs in a biased
system, wheru, is coupled with other dynamical variables.
This interaction acts in a similar way to the thermal b@tbe
Sec. Il A), and increases the rate of relaxation of the inco-
herent component of the evolution. The effect takes place for
v of the order of frequency of the coherent comporierntn
when it is very small, cf. Fig. 9 so that the perturbation is in
resonance with the system.
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