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Tunneling through a fluctuating barrier: Two-level model

Jan Iwaniszewski*
School of Physics and Chemistry, Lancaster University, Lancaster, LA1 4YB, United Kingdom

and Institute of Physics, Nicholas Copernicus University, Grudzia¸dzka 5, 87-100 Torun´, Poland†

~Received 7 July 1999!

We investigate the problem of tunneling across a randomly fluctuating barrier in the presence of dissipation
in the two-level approximation. The barrier fluctuations are induced by a random telegraph noise whose
switching raten is taken as a control parameter. For infinitely fast fluctuations the dynamics of the system is
similar to the static case, while, for very smalln, the barrier evolution is a superposition of static solutions for
both configurations. This leads to a resonant beating or long-time periodic localization. For an intermediate
value of n we have found a resonancelike suppression of coherent tunneling. When the system levels are
detuned, a resonant enhancement of decay in the incoherent regime also occurs.

PACS number~s!: 05.40.2a, 03.65.Sq, 73.40.Gk, 82.20.Mj
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I. INTRODUCTION

The problem of relaxation from a metastable state in
double-well potential occurs in many problems in phys
and chemistry as well as in other scientific areas@1#. In clas-
sical systems the process occurs due to the ubiquity of fl
tuations, not necessarily of thermal origin, and one must c
sider the problem in the framework of dissipative dynami
In quantum systems a metastable state may be also em
due to the tunneling effect, so the problem appears as a c
petition between coherent quantum dynamics and incohe
dissipation. The simplest model of a quantum particle m
ing in a double-well potential is given by a two-level syste
~TLS! @2#. This represents a reasonable approximation w
the lowest two states of the system are well localized in
two potential wells, and their energies are much less than
energy of higher states as well as than the barrier hei
Within this approximation an isolated system is complet
described by two parameters only: the tunneling matrix e
ment D which couples the levels and contains informati
about the height of the barrier; and the detuning parametee,
i.e., the difference between the energies of the ground st
of the wells, which accounts for the asymmetry in the s
tem. Although this formulation seems very simple of fir
sight, the coupling to the thermal bath substantially com
cates the problem@2,3#.

An important generalization appears when the tunne
system is exposed to time-dependent external fields@4,5#.
This is the case when one drives the quantum system w
strong laser field which results in modulation of the b
parametere. Until now the latter topic has attracted the m
jority of the attention: only a few papers have considered
problem of a time-dependentD, i.e., the effect of barrier
modulation on the tunneling dynamics. Grifoni and c
workers@6,7,5# drive the barrier with a periodic signal, whil
Goychuk and co-workers@8–11# used a stochastic perturba
tion of D.

In this article we also address the problem of random
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driven barrier height in the TLS approximation. Our ma
interest is the dependence of the population dynamics on
correlation timet of the barrier fluctuations. The correspon
ing problem has been considered in classical systems, l
ing to the discovery of resonant activation@12#—the appear-
ance of a maximal value of the mean escape rate for s
finite value oft. Further, it has been proved that an oppos
effect, called inhibition of activation, may also occur@13#,
i.e., a maximal slowing down of the activation process
some finite degree of correlation of the barrier perturbati
Our aim in what follows is to look for similar resonancelik
effects in quantum systems. Goychuk and co-workers init
ized studies of this problem. In Ref.@9# they found both
numerically and within certain approximations that the tra
fer rate in dissipative tunneling approaches a maximum
t21 of the order of unperturbedD. They also considered@8#
the influence oft on the transition from coherent to incohe
ent evolution, although only in a degenerate case (e50) and
for some particular examples. Here we treat this problem
more systematic way, looking for any resonancelike featu
in the time dependence of the system.

The physical situation which we intend to investigate
known to occur, e.g., in long-range electron transfer re
tions @14,8,11#. In such reactions the tunneling distance e
tends up to 20230 Å, much more than the range of th
overlap of atomic orbitals of the donor and the acceptor. T
state of the medium between those centers~the bridge! plays
an essential role in the transfer process, so the dynamic
conformational variations of the molecule cannot be ignor
Another area where the stochastic perturbation affects
tunneling barrier is semiconductor physics~e.g., Ref.@15#!,
where lattice excitations permanently modify the shape
the band structure. An external random perturbation of a b
rier can also arise when some control parameters fluctu
e.g., the electric field used to polarize a multilayer structu

The problem of tunneling through a time-modulated b
rier is known also in the scattering area. Some auth
@16,17# analyzed this phenomenon in the presence of p
odically oscillating height of the barrier. The main differen
between that case and the present one stems from the for
the potential. In the scattering problems the potential is o
finite range, outside which the particle moves freely. Hen
4890 ©2000 The American Physical Society
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PRE 61 4891TUNNELING THROUGH A FLUCTUATING BARRIER: . . .
the system is characterized by continuum of possible st
with some resonant structure induced by the barrier mod
tion @16#. The particle interacts with the barrier during
finite time interval, being reflected or transmitted with a
multaneous loss or gain of quantum of energy of the osc
tions. Our model concerns a confined system with a w
defined number of discrete states; consequently one
speak about a localization of the tunneling particle or abo
quantum coherence and its suppression.

As already mentioned, the TLS approximation of the tu
neling problem can legitimately be applied only when cert
relations between the characteristic energies of the sys
are fulfilled. This in turn imposes restrictions on the possi
values of the parameters used. However, in what follows
will not comply with them because our two-level model m
also describe other quantum systems where there are no
constraints on the parameters, e.g., a two-level atom inte
ing with an electromagnetic field.

The rest of the paper is organized as follows. In Sec. II
describe our system and obtain basic dynamical equation
Sec. III we review the properties of a static TLS system, a
consider the two limiting cases of infinitely fast and slo
fluctuations. Next we present the exact results for the un
ased case~Sec. IV! and some approximations and numeric
results for the biased case~Sec. V!. The results obtained
and the conclusions drawn are presented and discusse
Sec. VI.

II. SYSTEM

The Hamiltonian of the system can be written as

H52
1

2
\D~ t !sx1

1

2
\esz1

1

2
\j~ t !sz . ~1!

The Pauli matricess i ( i 5x,y,z) are the basis operators i
the localized representation in which the eigenstates ofsz
correspond to localization of the system in one of the pot
tial wells. The first term in Eq.~1! describes tunneling be
tween the wells. Due to the barrier fluctuations the tunnel
matrix elementD(t) is a random function of time. In the
following discussion we assume that these fluctuations a
from a symmetric dichotomic noise~DN! h(t). Exploiting
the properties of DN independently of the way it acts on
barrier, and without any loss of generality, one may write
decompositionD(t)5D01D1h(t). The noiseh(t) of zero
mean is characterized by correlation function^h(t)h(s)&
5exp(22nut2su), where the jump raten is half of the inverse
of the correlation timet of this noise.

The second term inH comes from the detuning energy\e
between the two levels, while the last one gives the inter
tion with the environment. It is given by a simple biline
coupling of the operatorsz , which is the quantum counter
part of position for a tunneling particle, with a zero-me
Gaussian white noisej(t), which represents the environ
ment. This noise is parametrized by the intensity 2k, while
its correlation function readŝj(t)j(s)&54kd(t2s). Such a
model of interaction with the surroundings may be cons
ered as a high temperature approximation of the quan
oscillators model of a thermal bath@18,3#. Using this model
we neglect many interesting features related to the quan
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nature of the environment@2,3#. However, our aim here is to
study the influence on the tunneling effect of a random d
turbance of the potential barrier, whereas the existence o
environment just plays a secondary role. We need it only
introduce a mechanism of dissipation.

Suppose that att50 the particle is localized in one of th
potential wells~say the right-hand one!. We are interested in
the probability P(t) of finding the particle in this well at
times t>0. This is simply related to the mean value ofsz :

P~ t !5
1

2
~^sz~ t !&11!. ~2!

Here ^•••& means averaging over both noisesj(t) andh(t)
as well as over quantum degrees of freedom. Following R
@19# or @20# to obtain the von Neuman–Liouville equatio
for the density operator of the system, and then exploit
the Shapiro-Loginov theorem@21#, one comes to a set of si
linear ordinary differential equations which completely d
scribes the system,

dRW

dt
5ARW , ~3a!

where

RW 5S ^sx~ t !&

^sy~ t !&

^sz~ t !&

^sx~ t !h~ t !&

^sy~ t !h~ t !&

^sz~ t !h~ t !&

D , ~3b!

A5S 22k 2e 0 0 0 0

e 22k D0 0 0 D1

0 2D0 0 0 2D1 0

0 0 0 22k22n 2e 0

0 0 D1 e 22k22n D0

0 2D1 0 0 2D0 22n

D .

~3c!

The problem has five parameters, four of which—e, D1 , k,
and n—may be equal to 0. OnlyD0Þ0, since we do con-
sider a tunneling problem.~Note that because of thisD1
cannot be greater thanD0.! From the form of the evolution
matrix A @Eq. ~3c!#, it follows that only the relative values o
the previous four parameters with respect toD0 will be im-
portant for the evolution. For the convenience of further d
cussion we leave all the quantities in the formulas below,
in numerics we use such relative values of parameters~sim-
ply D051). Also time in the figures is given in dimension
less unitst→t/D0.
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III. SOME SPECIAL CASES

A. Static barrier

Before we will investigate the influence of barrier fluctu
tions on the tunneling process, let us first briefly recall
main features of tunneling through a static barrier@2,22,3,7#.
In a symmetric case (e50), and without any interaction with
the surroundings,P(t) oscillates continuously with fre
quencyD and amplitude 1/2. Coupling to the thermal ba
impedes tunneling, which results in a damping of the coh
ent evolution,

P~ t !5
1

2 F11
D

V
exp~2kt !cos~Vt2f!G , ~4!

where sin(f)5k/D, as well as in a decrease of the frequen
of the oscillations

V5AD22k2. ~5!

Whenk becomes greater thanD the evolution becomes com
pletely incoherent,

P~ t !5
1

2
1

1

4G
@~G1k!exp@2~k2G!t#

1~G2k!exp@2~k1G!t !#, ~6!

whereG5Ak22D2. A further increase ofk slows down the
tunneling so much that the system stays in the initial well
a very long time, which is known as localization induced
damping@2#. Some examples of the evolution ofP(t) are
displayed in Fig. 1~a!.

A nonzero bias (eÞ0) also makes it more difficult to
tunnel. Fork50, we have

FIG. 1. Time evolution ofP(t) for a static barrier (D150), with
D[D051 for the unbiased case withe50 ~a! and the biased one
with e52 ~b!. The damping ratek induced by the environmen
reads 0.01~dotted curve!, 0.1 ~continuous curve!, 1.0 ~dash-dotted
curve!, and 100~dashed curve!. In all figures the dimensionles
time is given in units ofD0.
e

r-

y

r

P~ t !5
1

2 F11
e2

V2
1

D2

V2
cos~Vt !G , ~7!

where

V5AD21e2. ~8!

Although e speeds up the oscillations, it also decreases t
amplitude, so that less than the entire amount of probab
is sent between the levels. IfkÞ0 one has to solve a three
dimensional problem. Although this may be done analy
cally, we do not present the result because it is terribly co
plicated. We mention here only that ife2,D2/8 andk2,k
,k2, where

k1,2
2 5

D2

8«2
@1120«228«46~128«2!3/2#, «5e/D,

~9!

all three eigenvalues of the problem are real~negative!. In
the other cases there is one real eigenvalue and a pa
complex-conjugated eigenvalues, so the system exh
damped oscillations. However, for largek or e the amplitude
of these oscillations is negligible and the system relaxes
coherently to 1/2. Some examples of the evolution ofP(t)
are presented in Fig. 1~b!. As for the unbiased case, the co
pling to the bath suppresses the coherence but, because
asymmetry, the center of oscillations deviates towardP
.1/2. On the other hand, an interaction with the surrou
ings also unloads the surplus of probability of the init
state, so eventuallyP is distributed equally between bot
levels.

B. Infinitely fast fluctuations

In the limit n→` the auxiliary quantitieŝs i(t)h(t)& re-
lax to zero within the infinitely fast scale of time, so th
system evolves as in the static case withD5D0. In other
words, for very fast fluctuations ofD(t) the dynamics is
governed by its mean valueD0.

C. Infinitely slow fluctuations

It follows from a simple analysis of Eqs.~3a!–~3c! that, in
the limit of very slow fluctuations (n→0) the evolution of
the system is a superposition of the evolutions in two sta
configurations with tunneling matrix elementsD65D0
6D1, respectively. Consequently, the evolution ofP(t) is
richer than previously, with different combinations of typ
of solutions for static cases withD1 and D2 . Some ex-
amples are displayed in Figs. 2 and 3. For the unbiased
(e50) when k is small P(t) relaxes with two-frequency
oscillations. For smallD1 these frequencies are similar~see
Ref. @5#!, and we observe a beating phenomenon@Fig. 2~a!#.
On the other hand, whenD1 is large, so thatD2 is much
smaller thanD1 , these frequencies are correspondingly ve
different, and one can notice a phenomenon similar to loc
ization in a potential well—for half of the period of slowe
oscillations the system ‘‘prefers’’ to stay in one of the p
tential wells exhibiting only fast oscillations~the larger fre-
quency! inside it @Fig. 3~a!#.
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An increase ofk damps the oscillations and leads to i
coherent tunneling. However, ifD1 is comparable withD0
the difference betweenD1 andD2 is large, so that the criti-
cal values ofk for a transition from coherent to incohere
dynamics in the two configurations are very different. Co
sequently one can observe single-frequency damped os
tions moved towardP.1/2, an effect very similar to that o
the biased static barrier in Fig. 1~b!. However, the reason fo
the deviation is now different. It occurs due to the slowi
down of relaxation in theD2 configuration.

As in Sec. III A, wheneÞ0, curvesP(t) are moved up-
wards@Figs. 2~b! and 3~b!#. We may note also that, sincee

FIG. 2. Time evolution ofP(t) for an infinitely slow (n50)
random perturbation of the barrier with a small amplitude (D1

50.1). The other parameters are the same as in Fig. 1.

FIG. 3. The same as in Fig. 2, but for large amplitude (D1

50.95) of barrier fluctuations.
-
la-

increases the frequency of oscillation in the coherent reg
@see Eq.~8!#, the beat frequency decreases, as can be see
Fig. 2~b! whereD150.1. In contrast, this effect is invisible
when D1 is large @Fig. 3~b!# because, as follows from Eq
~7!, the amplitude of slow oscillations is very small. Cohe
ent tunneling means single-frequency damped oscillation

IV. UNBIASED CASE

For a system with degenerate energy levels (e50) the
quantitieŝ sx(t)& and^sx(t)h(t)& are decoupled from othe
dynamical variables, and problem~3a! reduces to a fourth-
dimensional one which, fortunately, is solvable analytical

A. kÄ0

Let us begin the analysis from the case when the sys
does not interact with the environment, i.e., whenk50. If
n,D1 the relevant eigenvaluesl of matrix A read

l52n6 iV1,2, ~10!

whereV1,25D06AD1
22n2, and

P~ t !5
1

2
1

D1

4AD1
22n2

exp~2nt !

3@cos~V1t1f!1cos~V2t2f!#, ~11!

where sin(f)5n/D1. As discussed in Sec. III C, ifn50 then
P(t) is a superposition of two coherent oscillations of fr
quenciesV1,25D06D1, respectively. A nonzero value ofn
brings these frequencies closer and causes damping. It
introduces a phase difference between the two modes
modifies their amplitudes. Whenn approachesD1 both fre-
quencies approachD0 and the phase difference equalsp/2.

If n.D1 we have

l52G1,26 iD0 , ~12!

whereG1,25n6An22D1
2, and

P~ t !5
1

2
1

1

2
cos~D0t !F1

2 S 12
n

An22D1
2D exp~2G1t !

1
1

2 S 11
n

An22D1
2D exp~2G2t !G , ~13!

i.e., P(t) is a superposition of two damped oscillating mod
with the same, independent fromn, frequency. An increase
of n yields that the first mode~with G1) is damped more and
more strongly, and its amplitude decreases faster and fa
toward 0 asn→`. It is this mode which is associated wit
the fast time scale mentioned in Sec. III B. On the oth
hand, whenn increases, the second mode is damped less
less and its amplitude tends to unity. In the limitn→` this
mode reaches an undamped oscillating state in accord
with Sec. III B.

It follows from the above discussion that although
damping originates from the interaction with the therm
bath (k50), nevertheless the system is damped for a fin
value of fluctuating rate. This is because of the stocha
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4894 PRE 61JAN IWANISZEWSKI
time dependence of the tunneling matrix element, wh
dephases itself at random for any realization of the tunne
process, causing decoherence. An average over the w
ensemble of realizations ofh(t) results in an exponentia
damping of coherent oscillations as well as in alteration
amplitudes and relative phases of possible modes ofP(t). If
n,D1, both modes are of equal importance, whereas fon
greater thanD1 one of them dominates the other. The stro
gest damping of the dominant oscillations appears fon
5D1, which constitutes a resonancelike condition for t
suppression of coherence in the system. Since neither q
tities n andD1 concern the system itself but relate, rather,
the barrier disturbance, one may say that the perturbatio
in resonance with itself. As a result of this resonance,
observes a maximal suppression of coherence in a tunne
process. An illustration of this effect is shown in Fig. 4 on
three-dimensional plot of the time evolution ofP(t) in de-
pendence onn.

B. kÅ0

If the system interacts with its surroundings the eigenv
ues ofA reads as@23#

l52n2k6Aa62Ab, ~14!

where

a5k21n22D0
22D1

2 , ~15a!

b5k2n21D0
2D1

22n2D0
2 . ~15b!

@The two remaining irrelevant eigenvalues, which are as
ciated with^sx(t)& and^sx(t)h(t)&, are:2k and2k2n.#
Analyzing the signs and the relationship betweena and b,
one can distinguish four possibilities:~I! two pairs of com-
plex conjugated eigenvalues with different real parts and
same imaginary ones;~II ! two pairs of complex conjugate
eigenvalues with the same real parts and different imagin
ones;~III ! two different negative real eigenvalues and o
pair of complex conjugated eigenvalues; and~IV ! four dif-
ferent negative real eigenvalues. In Fig. 5 we illustrate
location of these types of eigenvalues in the parameter s

FIG. 4. Time evolution ofP(t) in dependence on the decim
logarithm of n for the unbiased case (e50) without interaction
with the environment (k50), for D150.1.
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(k,n). The curvesCi ( i 51,2,3) which separate the differen
regions are given by the expressions

C1 : n5D0D1 /AD0
22k2,

C2 : n5A~k2D1!22D0
2,

C3 : n5A~k1D1!22D0
2.

One may note that any variation ofD1 only moves the
boundaries between these regions. It has no effect on
topology of this figure.

Figure 5 confirms an obvious expectation that, for sm
k, the evolution ofP(t) should be very similar to that which
we discussed in Sec. IV A. Of course a nonzero value ok
modifies the frequency, but more important is that it i
creases the damping parameters, so the coherence of the
neling process is being suppressed faster.

Relating our discussion to Sec. III C, it is also obvio
that for small nonzero values ofn the system behaves ver
similarly to the case of infinitely slow fluctuations. As pre
viously, a finite value ofn modifies the frequencies and in
creases damping rates. An increase ofn also modifies the
boundaries between the three different types of evolution
such a way that they are moved toward greater values ok.
For largern the two-oscillatory region disappears, but th
remaining two exist always.

The situation is a little bit different for very largen. The
expectation about the similarity to the dynamics of the c
with infinitely fast fluctuations~Sec. III B! proves correct for
finite k only. For largek the two regions mentioned abov
appear. We can also note that in comparison with the pr
erties of the system in the infinitely slow limit, the ma
result of a finite value ofn is an increase of damping rates
the relevant modes.

FIG. 5. Regions of different types of eigenvalues of matrixA for
the biased system (e50) with D051.0 andD150.8. Only the four
eigenvalues relevant to this case are considered. The regions
curves are numbered in accordance with the text. The broken
mentioned in the text should followC1 until the pointB, and then
follow C2.
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In light of this discussion, we may divide the parame
space (k,n) into two regions~dashed line in Fig. 5!, in
which P(t) relaxes either as in the limitn50 ~under the
line! or as in then5` one~over the line!. In the latter case
all four modes are important for the relaxation process, wh
in the former asn increases two of them have less and le
effect, since their damping rates increase withn to infinity.

Knowing the eigenvalues of the problem one can wr
down the expression forP(t). In the case ofb.0 it is con-
venient to show it in compact form:

P~ t !5
1

2
1

1

4Ab
exp„2~k1n!t…@~kn1Ab!C1~ t !

2~kn2Ab!C2~ t !1„n~k22D0
21Ab!

1k~n21Ab!…S1~ t !2„n~k22D0
22Ab!

1k~n22Ab!…S2~ t !#. ~16!

If 0 ,a12Ab[G1
2, then C1(t)5cosh(G1t) and S1(t)

5sinh(G1t)/G1. If 0.a12Ab[2V1
2, thenC1(t)5cos(V1t)

andS1(t)5sin(V1t)/V1. There are similar definitions for th
quantity a22Ab and the functionsC2(t) and S2(t). When
b,0, we have

P~ t !5
1

2
1

D0

2A2b
exp„2~k1n!t…sinh~Gt !

3FGA2b2~n22D1
2!V

G21V2
cos~Vt !

1S n1
~n22D1

2!G1VA2b

G21V2 D sin~Vt !G , ~17!

where we define6G6 iV[6Aa62iA2b.
The discussion about the phase diagram of possible ty

of eigenvalues suggests that, along the broken line in Fig
one should expect the appearance of the resonancelike
havior which was found fork50. This is true for smallk, as
shown in Fig. 6. Since an interaction with the surroundin

FIG. 6. Time evolution ofP(t) in dependence on the decim
logarithm ofn for the unbiased case (e50) with weak interaction
with the environment (k50.01), forD150.1.
r

e
s

es
5,
be-

s

damps the oscillations, for largerk it starts to compete with
the suppression of tunneling by barrier fluctuations. Con
quently, for k of the order ofD1, the resonance could n
longer be seen.

However, for very largek, in the region of localization
caused by strong damping~Sec. III A!, we can observe an
other effect of the enhancement of suppression of tunne
process~see Fig. 7!, although it is rather tiny. As in the cas
of a static barrier, whenk is very large, two eigenvalues@Eq.
~14!# are of the order ofk, while the other two become ver
small. ConsequentlyP(t) can be approximated as follow
@24#:

P~ t !'
1

2
1

1

2
@~11a12a2!exp„22~ka12na3!t…

1a2exp„22~n1ka11na3!t…#, ~18!

where a15(D0
21D1

2)/4k2, a254D0
2D1

2/4k2n2, and a3

5a21D1
2/k2. The reason for this effect is similar to that i

the case of maximal suppression of tunneling fork;D in a
static barrier. Forn.1/k only the first exponent in Eq.~18!
contributes to the evolution ofP(t). Its decay rate ap-
proaches a maximum forn5D0, so in region ofn;D0 we
observe a maximal decay ofP(t). It follows from the form
of a3 that the effect could be seen for large values ofD1.

V. BIASED CASE

A. kÄ0

The nonzero bias (eÞ0) essentially complicates the prob
lem, since all the components ofRW are dynamically coupled
in Eq. ~3a!. However, fork50 one can reduce the problem
of finding eigenvalues to the solution of a third-order po
nomial. That is,

l52n6An21m, ~19!

m31~a11a2!m21~a1a214n2a0!m14n2D1e250,
~20!

where a65(D06D1)21e2 and a05(D0
21e2). Although

Eq. ~20! may in principle be solved analytically, neverthele

FIG. 7. The same as in Fig. 6, but for strong interaction with
environment (k510).
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the result is too complicated for an exact analysis. Inste
from the form of Eq.~20! we may deduce some properties
its roots and then the way in which the eigenvalues dep
on n. To this end it is convenient to rewrite Eq.~20! by
means of two auxiliary functions—a cubic functionf 1(m)
5m(m1a1)(m1a2) and a linear one f 2(m)
524n2(a0m1D1

2e2):

f 1~m!2 f 2~m!50. ~208!

Let us notice thatn interferes in Eq.~208! through the slope
of f 2, only. The zeros of both functions are unaffected by
If n50 then f 2(m) vanishes, and zeros off 1(m) are the
roots of Eq.~20!. For a nonzeron, real roots of Eq.~20! are
given by intersection points off 1(m) and f 2(m), as dis-
played in Fig. 8. We can see that as compared with the
biased system a nonzero value ofe introduces quantitative
changes only. As before, asn increases the two, more neg
tive, roots move closer to each other, eventually becomin
pair of complex roots. This corresponds to the case when
becomes greater thanD1 in Sec. IV A. In addition, there is a
third root of Eq.~20! which lies close to zero. It originate
from the coupling witĥ sx(t)& and ^sx(t)h(t)&. For anyn
it remains in the interval (2D1

2e2/a0,0). Thus for smallD1

we may estimate it perturbatively, leading to the followin
form of the smallest eigenvalue:

l1'2
2D1

2e2n

a0~a014n2!
. ~21!

In both limits of n it vanishes but it reaches a minimum fo
n5Aa0/2, with the valuel152D1

2e2/(2a0
3/2). From the

other hand this value is the most negative fore252D0
2.

The above characteristic features of eigenvalues
clearly reflected in the dynamics of the system~Fig. 9!. For
smalln, when we have two pairs of complex eigenvalues

FIG. 8. Graphical solution of Eq.~208! for a few values ofn:
0.2, 0.5, and 0.8. The other parameters areD051.0, D150.95, and
e51.5.
d,

d

.

n-
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re

e

situation is very similar to the unbiased case in Sec. IV
The probabilityP(t) oscillates with two frequencies close t
a6 , with a slightly damped amplitude. The only differenc
is that the levels detuning moves the center of oscillatio
toward greater probabilities. Asn reaches its bifurcation
value where a pair of complex roots of Eq.~20! appears, we
observe strong damping ofP(t). The mechanism is the sam
as discussed in Sec. IV A, although here the critical value
n also depends one.

A further increase ofn leads to a new effect which is no
present in the unbiased case. We observe strong dampin
the value ofn for which a minimum ofl1 appears. This
means that, for this value ofn, the dynamics ofP(t) is
affected very much bŷsx(t)&. Our estimation for smallD1
shows that, at this minimum,n is of the order of the period
of unperturbed oscillations, so it may be considered a
resonance between the characteristic time of static sys
and the rate of stochastic disturbance. Sincel1 is a non-
monotonic function ofe, this resonance vanishes when t
detuning of levels becomes too large. The first type of re
nance also vanishes ase increases, since it concerns the c
herent part ofP(t) which decreases with detuning~Sec.
III A !. However, as can be seen in Fig. 10, after a suita
long time the second type of resonance causes a rapid d
of P(t), while the first type does not.

FIG. 9. Time evolution ofP(t) in dependence on the decima
logarithm ofn for the biased system (e52) without an interaction
with the environment (k50), for D150.1.

FIG. 10. The same as in Fig. 9, but fore520 andD150.95.
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B. kÅ0

The general case with both bias (eÞ0) and interaction
with the environment (kÞ0) cannot be solved analytically
However, it seems that the conclusions of the previous ca
may be extrapolated to this case. As for the unbiased sys
a nonzerok introduces damping of the evolution, so th
expected resonant effects become less clear~Fig. 11! or are
even totally wiped out~Fig. 12!.

FIG. 11. Time evolution ofP(t) in the dependence on the dec
mal logarithm ofn for the biased case (e52) with the interaction
with the environment (k50.1), for D150.95.

FIG. 12. The same as in Fig. 11, but fork510.
rg
es
m,

VI. CONCLUSIONS

In this paper we have investigated the evolution of
quantum particle placed in a double-well potential when
potential barrier is subjected to random fluctuations. The s
tem has been approximated by a two-level model, while
modulation of the barrier has been given by a dichotom
noise h(t). Additionally, the system has been allowed
interact with its environment. We have focused on the infl
ence on the quantum tunneling process of the finite value
the jumping raten of h(t). The most important finding of
this research is the appearance of a resonant damping o
tunneling in both possible kinds of evolution: coherent a
incoherent relaxation.

We have found two types of this resonance. The first o
originates in the destructive interference of damped osc
tions associated with the evolution in two possible config
rations of the system. Forn of the order of the stochasti
amplitudeD1 both these modes reach the same frequen
but with opposite phases that cause a very fast equilibra
of the system. The most interesting fact is that the resona
refers solely to the parameters of the stochastic perturba
Moreover, the characteristic time of this resonance may v
within a very large interval: from the mean value of th
tunneling matrix elementD0 to the value of the damping
constantk resulting from the interaction with the surround
ings. Hence one may exploit this mechanism to control
rate of suppression of tunneling phenomenon.

The second type of resonant damping occurs in a bia
system, whensx is coupled with other dynamical variable
This interaction acts in a similar way to the thermal bath~see
Sec. III A!, and increases the rate of relaxation of the inc
herent component of the evolution. The effect takes place
n of the order of frequency of the coherent component~even
when it is very small, cf. Fig. 9!, so that the perturbation is in
resonance with the system.
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